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Divided discharges for divided flows 
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Silver Street, Cambridge CB3 9EW, UK 
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An effluent outlet within thirty channel breadths upstream of a branching in a river 
can lead to high shoreline pollution levels along one of the branches, or near the tip 
of the central region. This paper identifies an optimal splitting of a steady discharge 
that minimizes the shoreline pollution. 

1. Introduction 
For a single steady outlet within thirty channel breadths upstream of a river delta, 

it is not possible to avoid relatively high shoreline pollution levels. Depending upon 
whereabouts across the flow the outlet is sited, either the contaminant plume will 
impinge on the tip of the central region, or the bulk of the contaminant will enter just 
one of the branches (giving comparatively high shoreline pollution levels further 
downstream in that branch). 

The ideal discharge strategy would be to  make the discharge rate at each point 
across the river proportional to the local river volume flow rate. Thie would ensure 
that the concentration immediately was uniform across the flow. So, no matter how 
the flow branched, there could be no regions of anomalously high shoreline 
concentrations. Alas, the practicalities of avoiding interference with other river uses, 
and maintaining the discharge from silting or damage, makes this ideal untenable. 
If a single outlet is environmentally unacceptable, then the next best engineering 
solution would be two outlets. 

If the discharge is divided (see figure l ) ,  then it should be possible to position the 
outlets so that neither of the two plumes impinge on the tip of the branching. Also, 
by adjusting the relative strengths of the discharges, it may be possible to avoid high 
shoreline concentrations along either of the branches. The present paper gives a 
constructive procedure for determining the optimal positions and strengths. It is 
shown that the improvements as regards shoreline concentrations can be quite 
considerable. 

Divided discharges and divided flows have received attention from Daish 
(1985a, b) ,  but in the context of sudden discharges. For steady discharges, the 
mirror-image situation of merging tributaries has been studied by the author (Smith 
1988). Except in the basic principles, there is no substantial mathematical overlap. 

2. Advection-diffusion equation 
As shown by Yotsukura & Cobb (1972) and by Yotsukura &, Sayre (1976), the use 

of flow-following coordinates virtually eliminates all the geometrical complications of 
meandering streams. Thus, for the main calculations we shall ignore longitudinal 
variations. The modifications needed to cope with meandering are pointed out in the 
Appendix. 
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FIQURE 1. Sketch of a river delta with a divided discharge so that  the pollution load is shared 
between the two downstream branches. I n  practice the plumes would be very much narrower and 
much further upstream. 

The x-direction is along the flow, with x = 0 defining the position where the river 
splits into two branches. The y-direction is across the flow, with the shoreline 
positions denoted by y-, y+. It is unduly restrictive to  enforce flow-following 
matching of y across the branching. So, proper account will need to be made for the 
matching of an upstream flow line y* to a downstream flow line y (see figure 1). 

For rivers with depth h ( y )  much less than the breadth, the appropriate depth- 
averaged advection-diffusion equation is 

hua,C = ay(hKayc).  ( 2 . l a )  

Here u ( y )  is the depth-averaged longitudinal velocity, c(x,  y )  is the concentration, 
and K ( Y )  is the effective transverse diffusivity. At the shorelines the no-flux boundary 
condition is 

hKayc = 0 on y = y-, y + .  (2.16) 

Diffusion along the flow can be neglected by virtue of the fact that contaminant 
plumes in rivers are extremely long and narrow (i.e. the downstream e-folding 
distance for cross-sect'ional mixing is about 30 times the total channel breadth). 

3. Eigenmodes 

eigenmodes $n ( y ) : 
A separation of variables solution of (2 .1~4 b )  leads to the introduction of the 

( 3 . 1 ~ )  

(3 .1~ )  
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Q is the volume flow rate for this stretch of the river system. The zero mode is 

q 5 0 = 1 ,  po=o (3.2a, 0) 

The eigenvalues p, increase with n. The nth eigenmode q5, has n zeros across the flow, 
and the zeros of successive eigenmodes interlace. In  particular, has opposite signs 
at the two shorelines. 

The solution for c(x ,  y) can be represented: 

(3.3) 

If the concentration profile were known a t  some cross-section, say x = 0, then the 
weight factors c, can be evaluated : 

(3 .4)  

Far downstream, the approach to  uniformity is dominated by the first non-zero 
coefficient el,  c2, ... . This led Smith (1982) to deduce that the only way to avoid 
concentrations in excess of co a t  either of the river banks is to require that 

c1 = 0. (3.5) 

This could be achieved by a single plume sited a t  the zero of the first mode 

there is no overshoot in either the upper or lower branch: 
Here, with two rivers downstream of the flow division, we have to ensure that 

cp = c ( L )  1 = 0 (3 .6a,  b )  

Also, we have to divide the pollution load between the branches so that the eventual 
shoreline concentrations in each branch are the same: 

( 3 . 6 ~ )  

The longitudinal lengthscale over which cross-sectional mixing takes place is 
sufficiently long that in a river delta there could be multiple branchings. The 
necessary generalization of (3.6a-c) would be to require that c1 be zero and co should 
share the common value in all of the eventual branches. 

4. Upstream extrapolation 
Our objective is to relate the downstream constraints (3.6a-c) upon the 

concentration to the upstream condition a t  the divided discharge. To do this, we use 
the reciprocity properties of the advection-diffusion equation (F. €3. Smith 1957). 

Across the relatively short flow-adjustment region, we use flow-following to  define 
upstream functions @iU), @iL), Y: 

for y in upper branch @ y ( O ,  y*) = q5!u)(y), (4.la) 

@:yo, y*) = 0, 

Y(O, y*) = QcL'/Q*; 

(4.lb) 

( 4 . 1 ~ )  

for y in lower branch @i"'(O, y*) = 0, (4.2a) 

( 4 . 2 b )  

(4.Sc) 



502 R.  Smith 
9!u’ 

FIGURE 2. Cross-stream profiles of the functions @(IJ) (-), @c” (.  . . .). and @J (- ---), at a 
moderate distance upstream of a branching. (The illustrative example in $ 8  is used with parameter 
values x = -:L*, s = a , )  
Here y* denotes the position upstream of the branching that links to the downstream 
position y (see figure 1). The superscripts *, (U), (L) are used to  distinguish quantities 
associated with the original channel and the two branches (Daish 1985b). 

In terms of the upstream concentration, depth and velocity profiles, the conditions 
(3 .6~-c)  for the avoidance of excessive shoreline pollution become 

[:hsYcdy* = 0 at x = 0. 

(4.3a, b )  

(4.3c) 

If we are to apply these conditions at some other value of x (e.g. a t  the 
divided discharge), then we need to define appropriate upstream extrapolations for 
@iu), @iL), Y. The work of F. B. Smith (1957) reveals that  since c(z, y*) is a 
solution of the advection-diffusion equation (2 . la ,  b ) ,  then @iu), @IL), Y should all 
be solutions of the adjoint (rcwersed-flow) equation 

-hua, Y = (7,(hKa, Y) ,  (4.4a) 

with h K a y  = 0 on y = y?, yf. (4.4b) 

It then follows that 2, of each of the integrals (4.3u-c) is zero. At moderate distances 
upstream of the branching the cross-stream profiles of @iu), Y can be expected 
to  have the relative shapes sketched in figure 2. We emphasize that @iu), @iL), Y arc 
not eigenmodes of the upstream reach. 

For a branching network there would be additional @- and Y-functions. Moreover, 
there would have to be repeated flow-following matching to extend the functions 
upstream to where the divided discharge is t o  be made. 

5. Dividing the discharge 
Such is the disparity (1  : 30) between the total breadth of a river and the 

downstream e-folding for transverse mixing, that  for a divided discharge we can 
ignore the longitudinal separation. At a fixed longitudinal position xo the two 
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discharge positions are denoted by y* = Y ,  y* = 2. Thus, the concentration is 
approximated by a pair of delta functions , 

huc = q[a8(y* - Y )  + p6(y* -2)], (5.la) 

with a+p=  1, (5.1 b )  

where q is the total discharge strength. In general, the number of separate plumes 
would correspond to the number of river branches. For the division aq,Pq of the 
discharge strength to be physically realizable, it is necessary that a and p both be 
positive. 

Substituting for huc into the upstream extrapolation of the conditions (4.3a-c) we 
arrive at the equations 

cr@yJ)(Y)+p@y'(z) = 0,  (5.2a) 

a@y(Y)+p@'1L)(Z) = 0,  (5.2 b)  

aY(Y)+/3Y(Z) = 0. (5.2~) 

For clarity the dependence upon x,, has been suppressed; i t  is the same for @iu), 
and Y. The three functions @I"), @iL), Y can be regarded as being known. Our 

task is to find a, p, Y ,  2. 
If we assume that the zeros of the three functions are in the order @$"), Y, @iu) 

(as shown in figure 2),  then it is convenient to use the Y-equation ( 5 . 2 ~ )  to eliminate 
a, p. Each of the remaining equations ( 5 . 2 ~ ~  b )  can then be interpreted as defining 
the zero contours in the ( Y ,  Z)-plane of the antisymmetric combinations 

(5 .3a,  b )  

Close to the branching we can infer that these contours have the relative shapes 
sketched in figure 3. Without loss of generality we can restrict attention to Z less 
than, and Y greater than, the zero of Y. 

Figure 4 gives a sketch of the quotients @iU)/Y and @iL)/Y. For a given value of 
2 (to the left of the singularity), we can evaluate the (u) and (L) quotients. The right- 
hand side positions where these respective quotients have the same values are 
denoted Y(u)(Z) ,Y(L)(Z) .  Likewise for a given value of Y (to the right of the 
singularity) we can associate W"( Y ) ,  2YL)( Y ) .  These are alternative ways of 
representing the zero contours of the combinations (5.3a, b )  : 

(Y(")(Z) ,Z) ,  (Y (L) (Z ) ,Z )  or (Y ,Z(") (Y) ) ,  (Y,Z( ' ) (Y)) .  (5.4) 

A sufficient condition for there to be an intersection of the zero contours is that 
their ordering is different along the two boundaries 2 = y?, Y = y:. For example, this 
would be ensured if 

Y(")(y_*) < Y(")(y_*) and 2(L)(yr) < Z("'(yr) (5.5) 

(see figure 3).  The same topological considerations reveal as x,, varies that the 
intersection could only be lost through the boundary (i.e. when one of the optimal 
positions is at one of the shorelines). Similarly, multiple intersections would have to 
originate from the shorelines. We shall assume that the solution for ( Y , Z )  is 
unique. 

If we have an approximation (Y,, 2,) to the optimal discharge pairing, then we 
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FIGURE 3. Zero contours of the antisymmetric combinations defined in (5.3a, b )  for varied pairs of 
discharge sites ( Y ,  2). The intersection defines the optimal pair of discharge sites at a given distance 
upstream of the branching. (Again, the illustrative example in $8 has been used with the parameter 
values x = -$L*,s = $.) 

FIGURE 4. Cross-stream profiles of the quotients @(")/Y (- ), and CP(~) / !P  ( .  . . ). a t  a moderate 
distance upstream of B branching (Once more, the illustrative example in $8 has been used with the 
parameter values x = -:L*, s = :.) 
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PIGLIRE 5.  Definition sketch of the subsidiary points (shaded circles) used t o  construct 
successive approximations (open circles) to  the optimal division of the discharge. 

can use the quotient graphs to generate points that lie on the zero contours (see 
figure 5):  

(&,z(''(K)), (ycu'(z,),Z,), (Y,,Z(L)(Yn)), (Y(L'(Zn) ,Zn) .  ( 5 . 6 ~ 4 )  

The intersection of the chords from t,he ( u )  and ( L )  points gives a much improved 
estimate of the optimal discharge pairing 

(5.7a) 

(5.76) 

A = (Y,- Y'"'(Z,)) (Z(U'(Y,) -2,) - (Y, - Y'U'(2,)) (Z'L'(Y,) -2,). (5.7c) 

Y,+l = Y,-(Y,- Y'U'(2,)) (Y,-Y'L'(Z,)) (Z(U'(Y,)-Z'L'(Y,))/d, 

z,,, = z,+(z'u'(Y,)-z,) (Z("'(Y,)-Z,) (Y'U'(Z,)-Y(L'(Z,))/d, 

with 

This gives a rapidly convergent constructive procedure to compute Y ,  2. 

division a,p of the discharge strength is given by 
Once the optimal positions (Y ,  2)  have been determined, the corresponding 

- Y(2) Y( Y )  
Y( Y )  - Y(2) ' = Y( Y )  - Y(2) . a =  ( 5 . 8 q  b )  

Since Y and Z are at opposite sides of the single zero of Y, it necessarily follows that 
a and pare  positive, i.e. that  the division aq, /3q of the discharge strength is physically 
realizable. 

6. Discharges close to and far from the branching 

( 4 . 2 ~ )  it follows that, for any Y,Z  in the respective parts of the flow we have 
If the divided discharge is only just upstream of the branching, then, from (4.1 b ) ,  

CqL'(Y) = 0, qJ'(2) = 0. (6.1 a, b )  
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Hencc, (5.2a, b)  force us to choose Y, Z to  correspond (via flow-following) to the zeros 
of the downstream modes 

f$y’(y) = 0, $ y ( z )  = 0. (6.2a, b)  

These are precisely the optimal discharge positions for a single point discharge in 
each of the branches (Smith 1982). Moreover, the piecewisc-constant values of !P 
(4.lc,  4 . 2 ~ )  ensure t>hat the division (5.8a, 6) of the discharge strengths is in the ratio 
of the volume flow rates for the two branches: 

a = Q(”/Q*, p = Q(‘)/Q*. (6.3a, b)  

To investigate optimal discharges far upstream of the branching, we pose the 
representations 

( 6 . 4 ~ )  

(6.4h) 

( 6 . 4 ~ )  

The asterisks indicate that these are upstream modes and cigenvalucs. The initial 
conditions (4.1), (4.2) guarantee the absence of any n = 0 components, and ensure 
that piu), piL’, rl are non-zero. 

The zero contours in the ( Y ,  @-plane defined by (5.3a, b )  are equivalent to the pair 
of equations 

c u m  

0 = c c PL”) rm exp [(p: +pm) xol [$:m %(Z) -$:(a G ( Y ) I ,  (6.5U) 

0 = c c PiL’r,exP[(pu,*+pu,)x,l[$,*(Y)#~(Z)-#,*(Z)#~(Y)1. (6 .56)  

n=l  m=l 

w m  

n=l  m-1 

We note that the ?z = m terms have zero coefficients. 
At large distances upstream of the branching, the optimal sites Y,Z become 

independent of x,, (or the coefficients piu),pLL), r , )  and satisfy the pair of equations 

0 = ~ : ( y ) ~ : ( z ) - ~ : ( z ) $ ~ ( y ) ,  0 = # : ( y , # 3 * ( z ) - ~ : ( z ) # ~ ( y ) .  (6.6,> b )  

Figure 6 shows the zero contours in the ( X ,  Y)-plane associated with these 4: and 
$: equations. The intersection defines the asymptotic optimal sites. It deserves 
emphasis that  there is no dependence upon the distance from, nor nature (Q(u), Q(L)) 
of the branching. 

In  ( 6 . 5 ~ ,  6) the departure from the asymptote ( 6 . 6 ~ ,  b)  is dominated by 
the (pz+p:) term. Hence, we can infer that the convergence of ( Y , Z )  to the 
upstream asymptote is a t  the fast rate exp ((& -&) xo). The corresponding 
longitudinal e-folding length is about 18 times the river breadth. 

Far upstream, the formulae ( 5 . 8 ~ ,  6) for the discharge strength bccomcs 

(6.7a, 6) 

By virtue of the results (6.6a, 6), we can replace #: by either #: or 4;. 
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Yi. 
Y-values Y:  

FIGURE 6. Zero contours of the antisymmetric combinations (6.5), (6.6) involving the g2 mode 
(-), and the g3 mode (stars). The intersection defines the asymptotic pair of discharge sites 
( Y , Z )  far upstream of the branching. 

Upstream of the branching an appropriate representation for the concentration 
c ( x ,  y*) would be 

m 

c = c t  + C c,* exp [ - , 4 ( x - x O ) ]  db(y*). (6.8) 
n-1 

For the double delta-function discharge (5.la),  the weight factors c,* are given by 

c: = d.$,*(Y) + P $ W ) l .  (6.9) 

If we use the formulae (6.7a, b ) ,  we can deduce that when the discharge position 
xo is far upstream, then 

(6.10) 

Hence, the departure from uniformity is dominated by the fourth mode c$t, and the 
approach to  uniformity is a t  the fast rate exp [ -,uu4*(x-x0)]. The corresponding 
e-folding length is about nine channel breadths. It is this rapid approach to  uniformity 
that permits the same optimal discharge specification Y ,  2, a, to apply to m y  
subsequent flow division. 

7. Avoiding local pollution 
The separate plumes can be thought of as going into the respective branches (see 

figure 1) .  So, in view of the work of Smith (1982), we can anticipate that there will 
not be any local regions of high shoreline concentration. However, in the absence of 
a proof, it is sensible to take the precaution of investigating the possibility of locally 
unacceptable pollution. 

15 FLM 2lP2 
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To evaluate the concentration at the tip we introduce a Green function G(x,y)  
corresponding to a delta-function discharge a t  the tip in the reversed flow: 

- h u a , ~ - a ,  ( h q , ~ )  = QS(X)S(Y*-Y,,,), ( 7 . 1 ~ )  

with hKal/G = 0 on y* = y!, y:. (7.1 b )  

The much used reciprocity properties of the advection-diffusion equation (F. B. 
Smith 1957), enable us to evaluate the tip concentration in terms of the discharge 
conditions : 

Hence, to  avoid unacceptable pollution at the tip we require 

aG(x, Y) + ~ G ( X ,  2) < 1 .  (7.3) 

I n  terms of the upstream eigenmodes q5:, the Green function has the representation 

(7.4) 

Strictly, the conditions (3.6a-c) merely ensure that in both branches the approach 
to the asymptotic concentration co is in the same sense at the two sides of each 
channel. Smith (1982) checked the naturc of the approach by evaluating thc next 
coefficient c2 in the representation (3.3). Thus, by analogy with @iu), @iL) we also 
define upstream extensions Or), @!jL) of the second modes : 

for y in upper branch @iU)(O> Y*) = dil”(y), (7.5a) 

@iL)(O, y*) = 0, (7.5b) 

for y in lower branch @iU)(O, y*) = 0, 

@y(0 ,  y*) = q5iL)(y). 

(7 .6a)  

(7.6b) 

As before, y* denotes the cross-stream position upstream of the branching that links 
to the downstream position y (see figure 1) .  Without loss of generality we select the 
signs of the modes $!ju), $!jL) so that they are positive a t  the shorelines. 

At the branching the ciu),ciL) coefficients (3.4) can be evaluated in terms of the 
upstream concentration, depth and velocity profiles : 

hu@iL)cdy* a t  x = 0. 
1 

(7.7a) 

(7.7b) 

With the sign convention that q5iu’, q5iL) are positive at the shorelines, the condition 
for no overshoot of concentration at the shorelines is that 

c y  < 0, c p  < 0. (7.8a, b )  

Provided that @!ju), @iL) satisfy the reversed-flow equation (4.4a, b ) ,  then the 
integrals (7.7a, b)  remain constant for x upstream of the branching (F. B. smith 
1957). In  particular, a t  the divided discharge the delta-function structure (5.1 a )  of 
huc, yields the requirements 

a@$’(Y) +p@!j”’(z) < 0, “@iL’(Y) +P@iL’(Z) < 0. (7.9a, b) 
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Thus, once a provisional optimization has been obtained by the constructive 
scheme (5.7), (5.8), we use these requirements (7 .3) ,  (7.9a, b )  to test thc acceptability 
of the specification (q,, Y ,  2, a, /3). The numerical evidence of the special case studied 
in the next section is that  the optimization is always acceptable. 

8. Illustrative example 

when the depth, velocity and diffusivity are proportional to each other : 
A simple example which permits explicit solutions for @iu), @iL), !P, @iu), @iL) is 

h = H[cos ( ~ y / 2 B ) ] i ,  u = U[COS ( ~ y / 2 B ) ] i ,  (%la ,  b )  

K = K[COS ( ~ y / 2 B ) ] i ,  ( 8 . l c )  

with y- = -B ,  y+ = B ,  Q = 4HUB/x. ( 8 . 1 ~ ~ - f )  

The eigenmodes are Legendre polynomials : 

$n = (2n+ l)iPn(7), 

n(n+ 1) X2K XY , 7 =sin-. 
A =  4 ~ ~ 2  2B 

(8 .2a)  

(8.2 b ,  c )  

We introduce a parameter s which indicates the splitting of the river volume flux 

Q'u'=a(l-S)Q*, &'"'=~(l+s)Q*. (8.3a, b )  

Q* between the upper and lower branches: 

The flow-following matching across the junction gives 

&*[ 1 - 7*] = Q(u)[ 1 - 71 

&*[1+ 7*] = &(L)[ 1 + 71 

for y in upper branch, (8 .4a)  

for y in lower branch, (8.4b) 

7 = - ( 2 7 * - 1 + s )  for ~ * > s ,  ( 8 . 4 ~ )  

(8.4d) 

1 
1-s 

Hence, just upstream of the branching the starting values for the required functions 
are (first for 7* > s) 

(8 .5a)  

(g)"i"' = 0, !P = i (1  +s), (8 .5b ,  c )  

(6y*2-6(1+s)y*+1+4~+~2) ,  ($@iL) = 0; (8.5d, e )  
1 (k);@p = - 

(1-S)Z 

(and secondly for 7* < s) 

1 (g)a@yJ' = 0, (g)t@y' = - ( 2 r * + 1 - s ) ,  l + s  (8 .6a,  b )  

Y = -i(l-s), (g)h$p' = 0 (8.64 

(8 .6e )  
1 

(:)$ @iL' = ~ ( 6 ~ " ~  + 6(  1 - S) 7* + 1 - 4s+ s2), 
(1 + s y  
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Legendre series for these same starting conditions at x = 0 are 

I W  

i ( 1  -s)3($q*2-g) 
. m  

(8.7d) 

( 8 . 7 e )  

To obtain the Legendre series solutions further upstream, we simply need multiply 
the coefficient of Pn(q*) by the appropriate exponential factor 

3n 
2n- 1 +- Lpn-,(s) - p n + 1 ( 4 1 )  P,(7*). 

exp (,(n + 1 ) n2K*r) 
4U*B** . 

From the n = 2 mode we can define a typical longitudinal lengthscale C* for 
transverse mixing : 

~ U * B * ~  L* = ____ 
3n2K* ’ 

Typically L* corresonds to a longitudinal distance of about 60B* or thirty channel 
breadths (Smith 1988, equation (6.11)). The illustrative figures 2-5 are based upon 
the special case 

s = a ,  x=-$* (8.10a, b )  

(i.e. the flow divides in the ratio 3 : 5 a t  a distance of about 15B* downstream of the 
divided discharge). For a river of total breadth 100 m this would be an outlet 750 
m upstream of the branching. 

Figure 7 ( a )  shows the optimal discharge positions Y , Z  as functions of the 
upstream distance x for fixed (positive) values of s (i.e. when the larger fraction 
$( 1 + s) Q* of the total river flow Q* goes into the lower branch). For negative s the 
results need to be inverted vertically. The acceptability tests (7.3), (7 .8a,  b )  are 
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FIGURE 7. (a) Optimal pairs of discharge positions -, . . . . for fixed partitions f( 1 - 8 )  :f( 1 +s) of 
the river volume flow between the upper and lower branches. The diffusion lengthscale L* typically 
corresponds t o  about thirty times the total width of the channel. ( b )  Optimal pairs of discharge 
strengths -, . . . for the divided discharge positions as given in (a). 

satisfied a t  all the points calculated. Figure 7 ( b )  shows the optimal discharge 
strengths. In keeping with the general predictions made in $6,  both figures 7 (a )  and 
7 ( b )  exhibit rapid approaches to the upstream asymptote 

= 0.392B*, a = p = i. (8.11a, b )  
7T 
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(4 

0 L* 2L* 

Position downstream of branching 

0 L* 2L* 

Position downstream of branching 

Frcr;rt~ 8. Shoreline concentrations along (a )  the smaller (upper) river branch and ( b )  the larger 
(lower) river branch. -, . . * correspond to the optimal divided discharge; the open diamonds 
and squares correspond to a single centreline discharge (which but for the branching would itself 
be optimal). 

Figure 8 (a ,  b )  illustrates the difference in shoreline concentrations for single and 
divided discharges. The discharge takes place a t  a distance iL* upstream of the 
branching with asymmetry parameter 9 = $. The single discharge is a t  the centreline. 
(To fix the downstream lengthscales we have assumed that the mixing lengths for the 
branches scale as the respective volume discharge rates QtU), Q(L)). For a river of total 
breadth 100 m, the discharge would be 0.75 km upstream of the branching and the 
results shown in figure 8 ( a ,  b )  extend to a downstream distance of 6 km. Prior to the 
branching the single centreline discharge minimizes the shoreline concentration. It is 
downstream of the branching that the shortcomings of the single discharge become 
apparent. Figure 8 ( a )  shows Lhat for the upper branch there are anomalously high 
concentrations near the tip, while figure 8 ( b )  shows that for the wider lower branch 
there are high concentrations even a t  large distances (because more than Q of the 
contaminant load enters that branch). By contrast, the divided discharge achieves 
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its objective of keeping the concentrations along all four shorelines below the lowest 
possible upper bound. 

The financial support of the Royal Society is gratefully acknowledged. 

Appendix. Varying streams 
For clarity the above analysis precluded any x-dependence of the flow properties. 

This Appendix details the minor changes that are needed to contend with this 
additional complication. 

To avoid the need for more than one velocity component, we align the coordinates 
x and y along and across the streamlines. The non-uniformity with respect to x 
implies that the distance increments m,, m2 in the two coordinate directions are 
functions of position x, y. Thus the advection-diffusion equation (2.la) takes the 
form 

m2 hua,c = ~,[(m,/rn2)hKayc], (A la)  

with a,(m,hu) = 0. (A 1b) 
The counterpart of the separation-of-variables representation (3.3), (3.4) is 

m 

c = co + n-1 2 cnexp ( - r / * n ( x ’ )  0 mldx’) #n(x, y), (A 2 a )  

with 

As before, the condition for no concentration overshoot is that 

c, = 0. (A 4) 

Since the definition of c1 involves the counterflow mode d,, the upstream extension 
must match to this same mode: 

= dl at x = 0 .  

Except for this occurrence of the counterflow mode dl in the definition of 
analysis proceeds exactly as in the uniform case. 

the 
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